
T-106.290 Laboratory Course in Programming:The Signi�ane of Data Representation to PerformaneAssistent Ville NenonenMiro Lahdenmäki55089Kmlahdenm�.hut.fi Tuukka Lehtonen51091Atvlehton�.hut.fi18th May 2004AbstratIn this paper we studied the performane of depth-�rst searh(DFS) with four di�erent graph implementations. To our surprisein the tests our bit-matrix implementation didn't perform better thanthe integer-matrix implementation even though it needs 32 times lessmemory.Our adjaeny list implementation where we plaed the data asit is ommon in graph implementations performed well in all ases,even when the graph data didn't �t to the ahe. With the other listimplementation there was some degradation in performane when thegraph size exeeded a multiple of the L2 ahe size.When testing the in�uene of graph density the performane urveof the adjaeny matrix implementations drew a paraboli urve indi-ating that performane was best with sparse and dense graphs.

1

1 IntrodutionIn this paper we study the signi�ane of data representation to performane.We study this by omparing the e�ieny of a basi graph algorithm alleddepth-�rst searh on four di�erent data implementations for a direted graph.Cahes have an integral e�et on how e�iently we an utilize the powerof modern proessors. This has been a growing trend for many years and islikely to beome more important as proessor speed surpasses memory speedmore and more. Modern mahine arhitetures and ahes are e�ient whendata an be handled loally so that is one of our primary onerns.The reason why we fous on a basi graph algorithm is that within thelimits of this ourse we annot delve into a very extensive study.1.1 Related WorkDirk Grunwald [4℄ et al. pointed out in 1993 that programmers generallydon't put too muh thought on memory alloators and assume that thememory alloators provided by their programming environment are optimal.They demonstrate that poor referene loality redues program performaneby inreasing paging and ahe miss rates. Cahe misses are beoming moreruial as the performane of memory relative to proessor speed is dereas-ing all the time. Grunwald et al. show that spae-e�ient algorithms havepoor referene loality often hindering performane. They suggest a memoryalloator design that is fast and has good loality of referene.In a previous paper they show that memory alloators ustomized forspei� appliations outperform general alloators distributed with widely-used operating systems while being more spae e�ient.In this paper they �nd out that algorithms that searh for free spaefor every alloation, suh as FirstFit and GNU G++, are generally slowerand have poor referene loality. Also an alloator that has been espeiallydesigned for good ahe loality, Gnu Loal, doesn't have signi�antly lowerahe miss rates than BSD or QuikFit algorithms. These two algorithmsallow very rapid alloation and dealloation and at the same time promoterapid objet re-use thus leading to higher referene loality.Blak [1℄ et al. show that array-based lists are muh faster than linked listimplementations for sequential aess. They aentuate that it is importantto understand whih variables an a�et results. They point out that manypapers on algorithms onentrate on higher level implementations and failto take note of the ahe harateristis of the mahines used. Their studiesshow that for dense graphs an adjaeny matrix using a bit-vetor is theuniversal winner, while for sparse graphs an array-based adjaeny list is2

best. They suggest that the best data struture depends largely on graphsize and average node degree but that it doesn't depend on graph topology.Chilimbi [2℄ et al. elevate that there are three general data plaementdesigns that an be used to produe ahe-onsious data strutures. Theyare lustering, oloring and ompression.Clustering attempts to pak data struture elements likely tobe aessed ontemporaneously into a ahe blok. - - Color-ing segragates heavily and infrequently aessed elements in non-on�iting ahe regions. - - Compression redues struture sizeor separates the ative portion of struture elements.Chilimbi presents a ahe-onsious memory alloator mallo thatattempts to o-loate ontemporaneously aessed data elements in the sameahe blok. It performs loal lustering quite e�iently and is safe in thatit a�ets only program performane. mallo di�ers from mallo in thatit takes an additional parameter that points to an existing data strutureelement likely to be aessed ontemporaneously with the element to be al-loated. It is also quite easily utilizable.Chilimbi also presents a omplementary approah to ahe-onsious allo-ation, to reorganize a struture's memory layout to orrespond to its aesspattern. For this he presents a ahe-onsious tree reorganizer morphthat applies lustering and oloring tehniques. Tseng [7℄ extends morphto luster ayli graphs (DAGs) as well as trees. But we are experimentingwith graphs that an be yli.Tseng [7℄ also addresses the issue of ahe performane with regard to dataloality. In addition he stresses the need for both ompile-time and run-timedata loality optimizations. Both of these optimizations are of ruial im-portane when attempting to make high performane programming availableto non-expert programmers. Although experiments have shown ompile-time optimizations to improve performane, sometimes even dramatially,he presents three ases where ompile-time optimizations are insu�ient andgives optimization tehniques for eah of these ases.Two basi representations of direted graphs are used in our experiments:adjaeny-list and adjaeny-matrix. Both of these an be implemented inseveral ways with regard to the data layout. In addition to these [3℄ presentsthe elementary depth-�rst searh (DFS) algorithm whih is under exprimen-tation in this paper. Cahe-onsious alloation is a tehnique of partiularinterest in this �eld of experiments sine it addresses ahing problems inpointer based data strutures, suh as adjaeny-list based graph represen-tations. 3

In the following hapters we will disuss our experiment design and presentthe results and analysis of our experimentations. Experiment design oversthe tested algorithm, disusses our input data onsiderations, testing fatorsand test run desriptions. The design is onluded with rough desriptionsof the results to be shown. Experimentations are presented along with theresulting graphs and numeri data.2 Experiment Design2.1 Brief desription of the algorithmWe use the basi depth-�rst searh algorithm as it is desribed in Introdutionto Algorithms [3℄.As implied by its name, depth-�rst searh seeks deeper in the graph when-ever possible. Edges are explored from the most reently disovered vertexthat still has unexplored edges leaving from it. When all the edges leavingfrom it have been explored, the searh baktraks to explore edges leavingfrom the vertex from whih it was disovered. This proess ontinues until allthe verties that are reahable from the original soure vertex are disovered.If there are still undisovered verties, then one of them is seleted as a newsoure. Depth-�rst searh is ready when all the verties are disovered.Verties are olored during the searh to indiate their state. Eah vertexis initially white. When a vertex is disovered it is grayed and when itsadjaeny list has been examined ompletely it is blakened. This guaranteesthat eah vertex ends up in just one depth-�rst tree.Eah vertex is also timestamped twie, when the vertex is �rst disov-ered and when the searh �nishes on the vertex. The timestamps are integersbetween 1 and 2jV j, where jV j is the number of verties.2.2 Brief desription of the tehnologyThe two standard ways to represent a graph are as a olletion of adjaenylists or as an adjaeny matrix.The adjaeny-list representation of a graph G = (V;E) on-sists of an array Adj of jV j lists, one for eah vertex in V . Foreah u 2 V , the adjaeny list Adj[u℄ ontains (pointers to) allthe verties v suh that there is an edge (u; v) 2 E.For the adjaeny-matrix representation of a graph G =(V;E), we assume that verties are numbered 1; 2; : : : ; jV j in4

some arbitrary manner. The adjaeny-matrix representation ofa graph G then onsists of a jV j x jV j matrix A = (aij) suh thataij = � 1 if (i; j) 2 E0 otherwise.2.3 Desription of input dataWe will reate the input data with Knuth's Stanford GraphBase [5℄ (SGB).With it we an easily generate random graphs with few parameters. We willtest di�erent sized graphs with varying density.Blak et al. [1℄ point out that the adjaeny-matrix representation is moste�ient for dense graphs where as an array based adjaeny-list representa-tion is more e�ient for sparse graphs. They observed no partiular e�etby varying the graph topology. We will perform some tests to see if this istrue for our ase also.We will plae the graphs generated with SGB to our own simpli�ed datastrutures.The generated graph data will be tested on two di�erent general data rep-resentations: an array based adjaeny-list representation and an adjaeny-matrix representation. The matrix representations will be referred to asadjmat and adjbitmat, for adjaeny integer-matrix and adjaeny bit-matrixrepresentations. In the adjaeny-list representation we will test two di�er-ent data plaement shemes. In the �rst sheme (adjlist1) we treat a vertexand its outgoing edges (vertex pointers) as a variable sized suessive mem-ory blok. Suh bloks are plaed onseutively in a single alloated blokof memory big enough for the whole graph. In the seond sheme (adjlist2)we will use a di�erent data layout and separate the array of graph vertiesfrom the edge lists of eah vertex. Thus eah vertex will be onstant sizedand ontain a pointer to its list of edges. Figures 1 and 2 larify these mem-ory layouts. Although somewhat syntheti, adjlist2 is loser to the ommonadjaeny-list representation than adjlist1.2.4 List of parametersSGB gives us the possibility to vary the following parameters in graph gen-eration:� Verties� Edges� Multi 5

#0 next #0 data #0 adj 1 #0 adj 2 #0 adj 3 #1 next #1 data #1 adj 1

#2 next #2 data #2 adj 1 #2 adj 2

base_address:

base_address+32:

base_address+64:

#3 next #3 data #3 adj 1 #3 adj 2

#3 adj 3

#n = vertex number n next = offset from base_address to next vertex

data = data related to a vertex (here an integer)

adj n = offset from base_address to the nth adjacent vertexFigure 1: adjlist1 memory layout
#1 data

#2 data

base_address:

#3 data

#1 arcs

#2 arcs

#3 arcs

...

base_address+8*V: #1 adj 1 #1 adj 2 #1 adj 3 #2 adj 1

base_address+8:

base_address+12:

#3 adj 1 #3 adj 2

#n = vertex number n

arcs = pointer to an array of adjacent vertex pointers

data = data related to a vertex (here an integer)

adj n = pointer to the nth adjacent vertex

V = number of vertices in graph

Figure 2: adjlist2 memory layout� Self� Direted� Distane from� Distane to� Min length� Max length� SeedFrom these parameters we hoose only verties and edges as fators tokeep the amount of testing manageable. Multiple edges between two vertiesor edges leading bak to the same vertex don't make any di�erene in DFS6

so we don't allow them. Also we are studying direted weightless graphs sowe don't need any length parameters. We will also keep the seed onstant.Verties and edges de�ne the size and density of the graph. We will studythe e�ieny e�ets of size and density separately on our four test ases.We will vary the number of verties from 30 to 3500 and the edge densityfrom 5% to 95%.With the distane from and distane to parameters we an a�et theprobability of inoming and outgoing edges at eah vertex and thus auselustering in the graph. Without this parameter a uniform graph will begiven. We hose not to vary these parameters and use the uniform edgedistribution.With the seed parameter provided by SGB we an ontrol the randomseed by whih the graph is generated in a system independent fashion. Soby giving the same set of parameters we an generate the same graph ondi�erent platforms.2.5 EnvironmentsWe performed our tests on 2.4 GHz Intel Pentium 4 mahines with 533 and800 MHz FSB. The P4 mahines have 8 KB L1 data ahe and 512 KB L2ahe. Both run Linux as their operating system.We used the GNU C/C++ ompiler suite for ompiling our test programs.All tests were ompiled with full optimizations.2.6 Desription of the test runsWe found out that SGB an be very slow in generating espeially dense graphsand an take thousands of times longer than exeuting a DFS sample runon the �nished graph itself. So we deided to optimize the proedure. Firstwe reate the graphs with SGB for the test ases with prede�ned parametersand save the graphs to disk. The graphs are then onverted into all of ourgraph representations and they are in turn saved to the disk for later use.Time is measured with the lok()-funtion provided by the operatingsystem whih measures proess time. The time for one depth �rst searh anbe so small that it's impossible to measure it aurately using lok(). Forthis reason we have to run DFS several times for one sample. We ontrol thiswith the -r parameter whih stands for runs-per-sample. There an also be adi�erene of 4 orders of magnitude in the running time of the samples in ourplanned graphs. For this reason we have to hange the runs-per-sample valueeven among samples that go to the same graph. We tried to keep the timeit takes to run one sample in the sale of seonds but less than 10 seonds to7

keep the time required to run all the tests humane. As the runs-per-samplevalue varies inside a graph we have to sale the result times aording to theruns-per-sample value.In our tests we vary the graph size (number of verties) and its density(edges per verties squared). We run eah test sample �fty times and ontrolwith the runs-per-sample that eah sample takes more than a seond. Asthe lok()-funtion will over�ow approximately every 72 minutes we hekwith eah sample if that has happened and run the sample again if it has.After a sample run we disard the obviously erroneous values based on howmuh they di�er from the median of the samples. These samples are rerun.This may happen when some other program interferes too muh ausing extraahe misses. We plot the average value of the samples in a graph and writedown several key �gures inluding the mean, variane, standard error andon�dene interval.We study the in�uene of graph size using ten di�erent sizes rangingfrom 30 to 3500 verties on three di�erent densities 5%, 40% and 75%. Westudy the e�et of density using ten di�erent values from 5% to 95% onthree di�erent graph sizes 50, 400 and 750. The slowness of generating densegraphs with SGB is one of the fators that limits our graph sizes.2.7 ResultsWe use three graphs to show the e�et of graph size, one for eah testeddensity. Eah graph has 10 result values per implementation.Similarly we use three graphs to show the e�et of graph density, one foreah tested size. Eah graph has 10 result values per implementation.We take 50 samples of eah fator ombination. The statistial signif-iane of the results is ensured by testing that the on�dene interval ofeah result falls within �2:5% of the mean value. Samples that are learlyerroneous are disarded automatially during testing. Samples that di�ermore than 20 % from the sample median at any time during a test run aredisarded sine they have been disturbed by other proesses.3 Experiments3.1 Varying Graph SizeIn this experiment we experimented how graph size a�ets the performaneof DFS. We did the experiments with three graph densities (d) 5%, 40% and75%. The number of verties was linearly raised from 50 to 3500 verties in8

the �rst �gure and from 50 to 1000 in the last two �gures. The number ofedges an be ounted from equation (1).jEj = djV j2 (1)The results are shown in �gures 3, 4 and 5 with eah having a onstantdensity while inreasing the number of verties.The omputational omplexity of the DFS algorithm follows from thegraph implementation. Adjaeny matrix implementations have jV j2 om-plexity and adjaeny list implementations have jV jjEj omplexity.After this we will refer to the di�erent tested implementations as follows:� adjmat = adjaeny integer-matrix� adjbitmat = adjaeny bit-matrix� adjlist1 = adjaeny list implementation 1� adjlist2 = adjaeny list implementation 2In Figure 1 adjlist2 performs best and its performane is almost linear.Adjlist1 performane follows losely with adjlist2 performane but starts tolag behind on 1500 verties and from just over 3000 verties on its perfor-mane lags behind some more when ompared to adjlist2. With 3500 vertiesadjlist1 's performane is about a third from adjlist2.The performane of adjmat and adjbitmat lags behind muh quiker thanadjlist1 when ompered to the adjlist2 performane. Their performaneurve resembles a parabola. Adjbitmat performs a little better than adjmat.With 2700 verties their performane is about a tenth of adjlist1 performaneas well as with 3500 verties.In Figure 2 adjlist2 performs best but takes a slight noth at about 500verties. Adjlist1 performane starts to lag behind at about 350 verties andends up at 2/3 performane with 1000 verties. The performane of adjmatand adjbitmat are very lose to eah other and are left behind in performaneending up in 1/4 of the performane of adjlist2. Adjmat wins the rae withadjbitmat by a very small margin.In Figure 3 adjlist2 performs best one again with near linear perfor-mane. It takes a noth at about 350 verties. Adjlist1 starts to leavebehind at 250 verties and takes a hit at 600 verties. It ends up last in thisrae with 1/3 of adjlist2 performane.Adjmat and adjbitmat perform similarly following a parabola. They over-ome adjlist1 at 500 verties and end up with 2/5 of adjlist2 performane.9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000 2500 3000 3500

D
FS

 ti
m

e
(s

ec
on

ds
)

Number of Vertices

Graph density 5%

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 3: Size test - 5% density

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

D
FS

 ti
m

e
(s

ec
on

ds
)

Number of Vertices

Graph density 40%

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 4: Size test - 40% density
10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

D
FS

 ti
m

e
(s

ec
on

ds
)

Number of Vertices

Graph density 75%

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 5: Size test - 75% density3.2 Varying Graph DensityIn this experiment the purpose was to see how graph density, i.e. how manyedges are there per vertex, a�ets performane on di�erent graph layouts andto ompare the di�erent layouts agains eah other in a meaningful way.Fator ombinations:Number of verties: jV j = 50; 400; 750Density: d = 0:05 + 0:1N , where 0 � N � 9.The number of edges an be alulated by equation (1).The omputational omplexity is the same as in setion 3.1.The results are shown in �gures 6, 7 and 8 with eah having a onstantnumber of verties with inreasing density.All adjaeny matrix traversals seem to follow the same pattern of adownward opening parabola where the worst performane appears to be atapproximately d = 0:5. Both adjmat and adjbitmat follow the same patternbut adjbitmat onstantly lags a little behind adjmat.11

On the other hand, adjaeny list traversals show di�erent behaviour.Just as in the tests in setion 3.1, adjlist1 starts showing bad performane inomparison to adjlist2 as we inrease |V|. It even starts losing to the matriximplementations at d = 0:8 when jV j = 400 and at d = 0:7 when jV j = 750.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
FS

 ti
m

e
(s

ec
on

ds
)

Graph density (%)

Graph size 50 vertices

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 6: Density test - 50 verties

12

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
FS

 ti
m

e
(s

ec
on

ds
)

Graph density (%)

Graph size 400 vertices

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 7: Density test - 400 verties

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
FS

 ti
m

e
(s

ec
on

ds
)

Graph density (%)

Graph size 750 vertices

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 8: Density test - 750 verties
13

4 Analysis4.1 Varying Graph SizeIn general, there were no huge surprises here although there are some puzzlingresults.First of all the performane of adjmat doesn't shok in any way. It prettymuh follows the paraboli trend it should be following based on it's om-plexity in eah of the three graph density ases. On the other hand, theperformane of adjbitmat was both a disappointment and a surprise basedon the results by Blak et al. [1℄ although they tested breadth-�rst-searh(BFS) instead of DFS. Our non-optimized implementation may a�et this,but another point of view is that, sine we do not perform any �payload op-erations� during traversal that we probably in real life would, the resultinginner loop is a tight one. Therefore it would seem that the bit level alu-lations done in the adjbitmap are just enough to make the ode generallyslower than the adjmat ase. Even huge di�erenes in the amount of mem-ory needed on large graph sizes (10000 verties) 382 MB vs. 12 MB) don'tseem to turn the tables as one might expet. One thing to note here is thatin most ases DFS jumps around a lot in memory, and doesn't proess muhsuessive memory in a row. This raises the probability that earlier loadedahe lines get trashed while traversing the subgraph.In �gure 1 we an see how adjlist1 takes a slight performane hit whenthe graph no longer �ts in L2 ahe (1500 verties) and another when thegraph is twie the L2 ahe size (3500 verties).In �gure 2 we an see adjlist1 and adjlist2 take a slight performane hitwhen the graph is greater than half the L2 ahe size (450 verties).In �gure 3 we an see adjlist1 take a slight performane hit when thegraph is greater than half the L2 ahe size (350 verties). It takes anotherwhen the graph is greater that L2 ahe size (450 verties) and ontinues toperform worse and worse.4.2 Varying Graph DensityAll of the graph density varying tests show the same ommon behaviour inthe matrix-based tests. Both with very sparse and very dense graphs perfor-mane is muh higher than with medium density graphs. This would seemto be aused by the general patterns of traversal in the adjaeny matrix. Tolarify, take the two extreme examples: a fully disonneted graph (0% den-sity) and a fully onneted graph (100% density). Considering how the DFSalgorithm traverses these adjaeny matries in memory, it an be seen that14

in the fully disonneted ase, the matrix is just sanned through linearlythus exploiting maximum data loality and avoiding bad ahe e�ets. Inthe fully onneted ase the graph verties are visited in linear order, henememory is again sanned in a very linear fashion. On the other hand, in themedium density ases, traversal is likely to be more random in memory andtherefore likely to take more time. This reasoning is very muh supported by�gures 6, 7 and 8. Just as in size testing, adjbitmat onstantly shows worseperformane than adjmat.The adjlist1 and adjlist2 ases show that the two di�erent layouts performalmost equally up until the graph size draws near to and exeeds the L2 ahesize. After that adjlist1 exeution time starts growing 3�4 times as fast asadjlist2. We used Valgrind [6℄ and its plugin Cahegrind to see how the ahehiearhy reats to the adjaeny-list tests. Simple Valgrind runs suggestedthat the adjlist1 ase auses 10-30% more L1 data ahe misses than adjlist2.5 SummaryWhat we did was test four di�erent graph implementations to experimenttheir e�et on DFS e�ieny. We had two adjaeny matrix implementa-tions and two adjaeny list implementations. To our surprise our adjaenybit-matrix implementation didn't perform better than the integer-matrix im-plementation even though it �t in a fration of the memory needed by theinteger-matrix implementation.We experimented with a ommon adjaeny list implementation adjlist2where verties and edges are plaed apart. It performed very well on all testases and demonstrates how muh data presentation and data plaement anin�uene e�ieny.Our other adjaeny list implementation adjlist1 in whih verties andedges are alongside su�ered somewhat when the graph data didn't �t in L2ahe and on bigger and denser graphs it was left behind by the adjaenymatrix implementations.When we tested the in�uene of graph density the performane of theadjaeny matrix implementations was best with sparse and again with densegraphs.What left us urious was the poor performane of the adjaeny bit-matrix and for future researh it would be interesting to try to make itperform better. Another point of interest would be to test the implementa-tions with di�erent payloads. Also it might be interesting to draw the graphsusing the memory needed for the graph as the x-axis.15

Referenes[1℄ J. Blak, C. Martel, and H. Qi. Graph and hashing algo-rithms for modern arhitetures: design and performane, 1998.http://iteseer.nj.ne.om/blak98graph.html.[2℄ T. M. Chilimbi, M. D. Hill, and J. R. Larus. Making pointer-based data strutures ahe onsious. Computer, 33(12):67�75, 2000.http://iteseer.nj.ne.om/hilimbi00making.html.[3℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdution to Algo-rithms. MIT Press, Cambridge, MA, 1990.[4℄ D. Grunwald, B. G. Zorn, and R. Henderson. Improving the aheloality of memory alloation. In SIGPLAN Conferene on Pro-gramming Language Design and Implementation, pages 177�186, 1993.http://iteseer.nj.ne.om/grunwald93improving.html.[5℄ D. E. Knuth. The Stanford GraphBase: A Platform for CombinatorialComputing. 1993. [From the publisher℄: . . . represents Knuth's �nalpreparation for Volume 4 of The Art of Computer Programming. Throughthe use of about 30 examples, the book demonstrates the art of literateprogramming. Eah example is a programmati essay, a short story thatan be read by human beings, as well as read and interpreted by ma-hines. In these essays/programs, Knuth makes new ontributions to theexposition of several important algorithms and data strutures.[6℄ J. Seward. Valgrind, a gpl'd system for debugging and pro�ling x86-linuxprograms, 2002-2004. http://valgrind.kde.org.[7℄ C.-W. Tseng. Software support for improv-ing loality in advaned sienti� odes, 2000.http://iteseer.nj.ne.om/artile/tseng00software.html.

16

