Lightsaber Simulator Project

Miro Lahdenmaéki Esa Nuuros
55089K 54558L
mlahdenm@cc.hut.fi enuuros@cc.hut.fi

Marko Luukkainen
55489L
msluukka@cc.hut.fi

23rd January 2005

Abstract

Our goal was to create a lightsaber simulator as an exercise project
for the course T-111.400 Virtual Reality. Our application features
mind blowing graphics, intuitive interaction and 3D sounds.

1 Introduction

The purpose of this project was to create a virtual reality application for the
course T-111.400 Virtual Reality. This was done for a real VR environment
to get a better view of actual software development in the field of virtual
reality. The application runs in the CAVE-like environment of the Telecom-
munications Software and Multimedia Laboratory at the Helsinki University
of Technology.

There were three requirements for the exercise.

e 1. Basic graphics
e 2. Basic interaction
e 3. Sounds

Fulfilling these basic requirements was mandatory. To achieve these ob-
jectives the application had to run. More sophisticated features were needed

for a better grade. Such features included: better graphics with textures,
lights and shadows, an improved sound scene, a more realistic physics model
and improved interaction.

Next we describe the application in detail and represent a UML class
chart.

2 Functionality

The application was built iteratively. First the lightsaber was implemented.
It is controlled using a wand since it is close to an actual sabre handle. The
lightsaber has a glow around it.

It was planned that the lightsaber would come out of its hilt when a
button was pressed on the wand. (Or if the button on the wand didn’t work,
we could have used the glove on the other hand for control: fist = blade in,
hand open => blade out, by default the sabre would always be out). This
feature was not considered important and was left out.

Next some sounds were to be integrated to the system. It was planned
that the lightsaber woud make a sound as it moved. The faster the saber
would move the louder the sound was going to be. The sound would come
from the direction of the lightsaber. Due to some problems with the sound
system that are discussed later we didn’t implement a changing sound but a
constant humming sound instead.

A practice droid would next be implemented that would hover and circle
around the avatar. It was planned to make a hovering sound which was left
out to make other sounds easier to perceive. It would shoot slow moving
laser beams directed towards the avatar. It would be shaped like a sphere
and parts of its surface material would glow.

The player would be able to deflect the laser beams by directing the
lightsaber close enough to an incoming laser beam. A successfull block would
increase the experience points of the avatar. A hit would decrease the hit
points of the avatar. A hit would be recorded when a beam got inside a virtual
cylinder that surrounded the position of the goggles. Experience points were
to be shown in the upper right corner of the view while the hit points were
to be shown in the upper left corner. In the final version both the experience
points and the hit points were shown in the upper left corner of the screen.
In addition a game over text appears after the player’s hit points are up and
a counter informs the player when the next game will begin.

The deflecting area of the lightsaber would be modeled as a cuboid and
the laser beam as a simple line segment.

The surroundings in the holo deck would be textured to add a star wars
feel to the simulation.

Additional features were planned in case we would have time to implement
them:

e Droid will cast shadows on the walls.

The user may select the color of the lightsaber.

User can push the hovering droid away with his left hand.

Better-looking environment where the avatar moves.

Better moving algorithm for the droid.

3 UML Class Chart

Figure 1 shows the initial sketch of the class diagram.

VjGIApp
FLUIDl
<<AC_VrControl>>
LightsaberApp
+playSample() < - +init(): void - =>
+setListener() 1 +draw(): void 1
+setWorldRotation() = 7 T|+preFrame(): void | ~
+setTransformations() +intraFrame()
+note0ff () 1 +postFrame(): void
+moveSource()
o— | Droid
World

#laserBeams: list

Lightsaber _L‘#score: int
+handleCollisions(): VOid‘II_

1

Player

Figure 1: Class diagram

4 Schedule

A rough estimate on when features should be working was planned on a basic
level.

e Week 42: Some basic VR application running using the given libraries
e Week 43: Basic lightsaber working

e Week 44: Light sabre sounds

e Week 45: Practice droid + sounds

e Week 46: Collision detection + sounds

e Week 47: Fine-tuning for the porting session

e Week 48: First porting session

e Week 49: Fixing issues found in porting session

e Week 2: Final touches

e Week 3: Second porting session

e Week 4: Final report

5 Results

We implemented all the mandatory requirements: the application has graph-
ics, sound effects, and interaction.

The graphics include a room the player is situated in. The room contains
a platform which the player stands on and fights the droid. The droid is
hovering above the chasm and the player has his lightsaber displayed in front
of him. The graphics also include the laser beams the droid shoots. We used
textures and light sources in the scene to add to the visuals.

As additional graphical features that we didn’t include in the project
plan we implemented a trailing effect for the lightsaber and explosions/smoke
effects for the laser hits. We also had a score counter displayed in the HUD.
We decided not to implement the shadows because our scene was built in a
way that the shadows would not have contributed to it. Only the droid could
have cast a shadow and it would have always been cast on a wall. Probably
the user wouldn’t have even noticed it.

For sound effects we had a blaster sound for the droid when it shoots
at the player. It was positioned at the droid’s location. The saber makes a
humming sound, but we didn’t figure out a way to implement the change in
pitch you here in the movies when the saber is whirled in the air. Blocking
the laser beams with the saber also produces a sound effect that is positioned
at the location of the impact point. We also had explosion sounds for the
laser beams as they hit the platform or the walls of the room. These are
also positioned correctly. One reason why we didn’t implement the change
in lightsaber pitch was because we couldn’t get Mustajuuri to produce any
sound on our own computers and there was no time to add features in the
porting sessions.

As for interaction, the player can move around and control his lightsaber.
The player can deflect the laser beams shot by the droid by moving his saber
in front of the beam or dodge the beams by moving out of the their way.

6 Time usage

We mostly worked at the same time, everyone at their own computer and
communicating with each other via IRC. The time usage per head went
roughly as follows:

In the first part we designed the application and wrote the project plan.
This took around 5 hours.

In the second part we started by setting up the programming environment
for our own machines by compiling the various libraries for different machines.
This took about 5 hours.

Then we wrote the basic skeleton for the application and tested it in the
first porting session in EVE. We spent 3 hours in the porting session (we got
one hour extra for being the first group and having to go confront the initial
difficulties). The writing of the basic application took 10 hours.

After the porting we had time to fix the problems found and more or less
finish the application for the second porting and demo session. The fixing
and finishing of the application along with creating the models, textures and
sound effects took around 15 hours. We spent 2 hours in the second porting
session in EVE.

So we spent around 40 hours each for the project part of the course.

7 Problems we had

Mustajuuri provided some problems regarding the sound effects. There was
no documentation of the used classes (we had to read the source). We also
didn’t get it to work in linux so we could’ve tested our sounds before the
EVE porting sessions. This prevented us from implementing the change in
the pitch of the humming sound of the lightsaber. The library compiled ok,
but it just didn’t produce any sound.

We also had problems with the various config files for both VRJuggler
and Fluid. In the first porting session we couldn’t get the image displayed
on the CAVE walls because there wasn’t a valid VRJuggler configuration
file available. In the second porting session we had a problem where when
the player moved the surroundings would move too much in relation to the
player. We didn’t have time to fix this in the porting session.

Fluid configuration files also changed during the project and we had prob-
lems in the second porting session with this. We had the old fluid configura-
tion file and the application just crashed without any error message. Some
basic error checking in the Fluid library would be appreciated. Fluid also
didn’t compile cleanly in EVE. We had to insert various preprocessor defini-
tions in our own code in order to compile it.

8 Course feedback

Judging from the time we used for the project, the amount of credits you
get for it is correct. We had the advantage that all of us are interested in
computer graphics as a hobby and we had lots of code we wrote before the
project we could just take and use.

likka Olli was very helpful and knew the environment in EVE. This really
helped in tracking the problems in the porting sessions.

